Mission to Mars - USD 383 Summer STEM - Day 1
Summer 2017

Learning Objectives

e Students will be able to navigate and use Scratch with a basic knowledge, build scripts,
and draw within the program

Resources
e Slides: http://people.cs.ksu.edu/~russfeld/presentations/stem2017/day1.html
Code.org video: https://www.youtube.com/watch?v=nKlu9yen5nc
Scratch Website: http://scratch.mit.edu
Scratch Wiki on Blocks: http://wiki.scratch.mit.edu/wiki/Blocks
Scratch Spirograph: http://scratch.mit.edu/projects/21326308/

Lesson Setup Before Class

e Log on to computers using STEM accounts
e Have Spirograph Scratch file available on the Scratch website

Schedule
e 9:00 - Icebreaker
9:15 - STEM Surveys & Accounts
9:30 - Videos
9:45 - Learning Scratch
10:15 - Break
10:20 - Shapes in Scratch
10:50 - Spirograph
11:00 - Wrap-Up

Lecture Notes

1. [lcebreaker] Have teachers introduce and give a bit of information about themselves
and what they’d like to achieve during the camp. Go around the room and have each
student introduce herself/himself and say what they want to learn from the camp. You
could also encourage students to ask any questions they have about the instructors or
the class, just to set the stage for an open forum of ideas (provided it is PG rated, of
course).

2. [Surveys] Before we get started, we’d like you to do an online survey about what you
know so far. This helps with K-State’s research about how to teach students to be

computer programmers more effectively.

<<<STEM Surveys and Online Account Setup Here>>>

http://people.cs.ksu.edu/~russfeld/presentations/stem2017/day1.html
https://www.youtube.com/watch?v=nKIu9yen5nc
http://scratch.mit.edu/
http://wiki.scratch.mit.edu/wiki/Blocks
http://scratch.mit.edu/projects/21326308/

3. [Code.org Video] Computer Science is becoming an important part of many different
fields, and knowledge of how computers work could be vital in the future. Code.org is a
non-profit organization founded to help bring Computer Science to young people in
schools and beyond. Let’s take a look at their video promoting what they’d like to
accomplish. <Show Video>.

a. Discussion Points:
i. What do you think about this video?
ii. Do you think learning how computers work is important? Why/Why not?
iii. What are some of the things you do every day that use computers? Can
you do them without computers?

4. [The Martian Video] How can computer science be used in the real world? To help
show how useful it is, this week we’re going to put ourselves in the shoes of
programmers at NASA working on a unique situation: someone is stranded on Mars!
How many of you have seen the movie “The Martian”? <get feedback> Let’s take a look
at this clip from the start of the movie so we know what is going on. <Show Video>. This
week, we’ll tackle several issues presented in the movie and show how computer
science can help us bring him home!

5. [Schedule] Here’s today’s Schedule: <refer to slide>

6. [Introduce Scratch] Have students load the Scratch website, then instruct them to click
on the Create button at the top. That will take them directly to the main Scratch editor.
Take some time to describe the different parts of the Scratch editor:

a. The Stage
i. Editing Backdrops
i. Editing Sounds
iii. X &Y Coordinates (can relate back to cartesian coordinates in geometry)
iv. Xranges from -240 to 240 and Y ranges from -180 to 180 (480 x 360
size)
b. The Sprites
i. How to choose a new sprite from the library
ii. How to create a sprite from an uploaded image
iii. How to paint a new sprite from scratch
iv. Duplicating Sprites
v. Deleting Sprites
vi. Renaming Sprites (click the blue (i) on the sprite when selected)
vii. Editing Sprite Costumes
viii. Editing Sounds
c. The Palette (http://wiki.scratch.mit.edu/wiki/Blocks)
i. Motion - Blocks that move sprites around the screen
il. Looks - Blocks that change how sprites or backgrounds look

http://wiki.scratch.mit.edu/wiki/Blocks

iii. Sound - Blocks that will play sounds and adjust volume
iv. Pen - Blocks that will draw on the screen using sprites as the pen

X. More Blocks - Create your own blocks to simplify your programs
d. Block Shapes (http://wiki.scratch.mit.edu/wiki/Blocks)
i. “Hat” blocks - they start the program based on the condition specified (ex:

When green flag clicked)

ii. “C”blocks - they have code inside them that runs at specific times based
on the block (if, repeat, forever, etc.)

iii. “Hat” blocks - Stop All, Forever, Delete this Clone

iv. “Stack” blocks - Standard blocks

v. “Reporter” blocks - these blocks report values such as numbers, strings,
etc. (rounded edges)
vi. “Boolean” blocks - these blocks are for representing boolean values
(angled edges)
e. Menus

i. File > Downloading to your computer
ii. File > Upload from your computer
iii. Edit>Undelete
f. Ask for questions / Give students some time (5-10 minutes) to play around and
discover how it works on their own.

7. [Getting Started with Scratch]
a. Introduce various blocks (below are some suggestions)

ii. Motion - all

iii. Looks - say / think, next costume
iv. Sound - play sound

v. Pen - clear, pen down, pen up

X. More Blocks - (none at this time)
b. Work with students to build a simple program
i. Start by gliding a sprite across the screen with the motion blocks. Have it
bounce if it hits an edge
ii. Have the sprite play a sound when it hits an edge
iii. Create a second sprite, then have it say something when it touches the

http://wiki.scratch.mit.edu/wiki/Blocks

main sprite
iv. Allow students ample time to experiment and learn on their own
v. See Activity1_Explore.sb2 for an example
c. Students should learn:
i. Simple motion blocks
i. Working with sprites and costumes
ii. Working within the Scratch environment

8. [Drawing in Scratch] See the lesson plans in the “Drawing in Scratch” folder from
Nathan Bean: http://www.nathanhbean.com/scratch/ScratchCurriculum/Geometry.zip

a. Students should learn:

i. Using the Pen blocks

ii. Using iteration (repetition) to repeat actions

iii. Getting user input

iv. Simple mathematics in Scratch
b. See the Activity2_*.sb2 files for examples of partially completed projects

9. [Spirographs] Now that we can draw in Scratch, let’s play around with something even
more interesting: spirographs.

a. Show the slides to help explain what a spirograph is. It includes some examples
of the math that goes into making a Spirograph work, which ends with the
formula for calculating the position of the pencil at any given time.

b. Have the students open the Scratch Spirograph program:
http://scratch.mit.edu/projects/21326308/

c. Let students experiment by adjusting the value of the two variables. For best
results, those values should be “relatively prime” which means that they should
not share any common factors. Prime numbers are a good choice to use. Let
students share good values that they find with the class.

d. Bonus: Show students how to modify the variables by hand. Encourage them to
try different values outside the normal range (less than 0, greater than 1, etc.)

e. Discussion: Where would this be important in the real world?

i. Artificial intelligence for games - randomly move within a set area
i. Rotational motion - think of the wheels of a steam locomotive
iii. Modeling how gears interlock and move together
f. Students should learn:
i. Opening already created projects
ii. Working with existing variables
iii. Experimenting within a Scratch program

10. [Reflections]
a. What did we learn today?
b. What can we do with this new knowledge?
c. What do we want to learn next?

http://www.nathanhbean.com/scratch/ScratchCurriculum/Geometry.zip
http://scratch.mit.edu/projects/21326308/

NOTE:

d. Any other questions?

I included a bunch of slides on programming. They are good information if you want to

show how Scratch relates to real programming, as well as what real programming looks like.
The notes for those slides are below:

10.

11.

[Source Code] Let’s say, for example, that we want to write a program that will take an
input from the user and print the result of the number divided by 61.

[Scratch] To do that in Scratch, we would use the following. [slide] As you can see, this
program is written in a language that very closely resembles the English language that
you and | use every day. That makes it really easy for a human to understand. Do you
think a computer is able to easily understand this language?

a. Discuss. Ask them why or why not.

[Language Hierarchy] In fact, Scratch as a programming language is very hard for a
computer to understand directly. Therefore, it is called a High Level language. Let’s look
at some other examples of High Level languages.

[C/C++] | usually note how the main function is like a “hat” block in Scratch

[Java] I usually note how the “class” in Java is like a sprite in Scratch; it can have
multiple functions of “hat” blocks

[C#]

[Python] | used python in a “terminal” style here just to show how it can work without the
framework code the other languages require.

[Other Languages] There are many other high level languages out there. Some of these
you may work with in the future, but many of them you may not need at all unless you
are in a specialized field.

[Language Hierarchy] The next step in the path of most programs is to convert it to
Assembly language. This is a language that is still readable by humans, but it is much
closer to the language a computer actually understands.

[Compiler] To go from a high level language to assembly language, we use a program
called a “compiler.” Its entire purpose is to translate what we wrote in a high level
language and turn it into assembly language.

[Assembly Language] This is an example of what assembly language looks like. This
particular part is simply taking a number and dividing it by 61. Looks quite a bit more

12.

13.

14.

15.

16.

complex, doesn't it?

[Assembly Language] Here’s another example from the C program | showed earlier.
This is the section of code that is getting input from the user.

[Language Hierarchy] Once we have the assembly language, the next step is to
convert it to machine language. This is the actual “code” that computers can read and
use.

[Assembler] To do that, we use another program, called an assembler, to convert our
existing assembly language code into machine language code

[Machine Language] This is an example of Machine Language code, written in a way
that it is somewhat approachable by humans.

[Machine Language] This is the real machine language code. It is simply a set of binary
code (1s and 0s) that tell the computer exactly what to do.

