Forecast: Cloudy, with scattered storms Or, why the world is scary. But fun.

Dr. Dan Andresen (dan@k-state.edu)

CIS115, February 25, 2014

Computing gets smaller (and bigger)

- More specialized
- More embedded
- Grid/cloud computing
- Networks get FAST!

Ul's become specialized

- Voice
- Mobile
- Decent AI
 10x speedup needed

Software becomes specialized

- Web services dominate
- Reliability over features
- Are games reality?

Microsoft Office Live is comina.

Today, an online presence is almost a requirement for small business success. That's why Microsoft is introducing Microsoft® Office Live—a set of affordable business productivity services designed to help you grow your business more easily by establishing a professional presence online.

WHY MICROSOFT OFFICE expertly hosted by

Microsoft Office Live will provide your company with its own domain name, Web site e-mail accounts for free.

Additionally, Microsoft Office Live will offer you and your employees expert business management applications, such as customer, project, and document management t and a security-enhanced private Web site—affordably managed and maintained by Microsoft—where you can work together and share information with your employee: customers, suppliers, and contractors

A beta version of Microsoft Office Live will launch in early 2006.*

Hardware gets specialized

- Moore's law is dead
 Killed by power demands
- Future is multi-core, "appropriate" performance
- Divisions blur
- Metcalfe's law still going

Integrated	Memory Co	ontroller –	3 Ch DDR3	
Core 0	Core 1	Core 2	Core 3	
Q P	Shared L	3 Cache		

NOVEMBER 16, 2009

Supercomputers with 100 million cores coming by 2018

The push is on to build exascale supercomputers that can solve the planet's biggest problems

By Patrick Thibodeau | Computerworld

Clock speeds will only double, triple in next 15 years

International Fabless 2005

Fundamental changes in design required

Monday 14 November 2005, 09:25

Twice the power for half the price every 18 months

Year	1979	1984	2005	2017
RAM	16 k	128k	256 mb	104,032 mb
Hard drive	128 k	400 k	60 _{gb}	12,191 gb
Speed	2 _{mhz}	10 _{mhz}	1600 mbz	650,199 mbz
Cost	\$5000	\$3900	\$900	\$9

Computing is getting a lot less "normal"

- Quantum computing
- Biological/genetic computing
- Optical computing
- Nanocomputing

The law of unintended consequences

- "Power corrupts, and absolute power corrupts absolutely."
- Computers have power, and computer software is corrupt, so we're doomed before we even begin.
- We've got to build resilient systems.

"I think I've fixed the intercom. Just remember to speak into the ceiling fan when the doobell rings."

Danger, Will Robinson

Sayano-Shushenskaya power plant

Before

Others: Stuxnet, Sony PSN, ...

After – 7+ killed, dozens missing

Thinks get cloudy – in a good way

Thin clients + Internet + Supercomputing/clusters = Cool tools + Big Data + Big Science

How much data?

- Google processes 20 PB a day (2008) stores 10EB ('14)
- Wayback Machine has 3 PB + 100 TB/month (3/2009)
- Facebook stores 180 PB of user data/year (11/'12)
- eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- CERN's LHC will generate 15 PB a year (??)

What to do with more data?

- Answering factoid questions
 - Pattern matching on the Web
 - Works amazingly well

Who shot Abraham Lincoln? \rightarrow X shot Abraham Lincoln

- Learning relations
 - Start with seed instances
 - Search for patterns on the Web
 - Using patterns to find more instances

Wolfgang Amadeus Mozart (1756 - 1791) Einstein was born in 1879

N was born in DATE

Birthday-of(Mozart, 1756) Birthday-of(Einstein, 1879)

(Brill et al., TREC 2001; Lin, ACM TOIS 2007) (Agichtein and Gravano, DL 2000; Ravichandran and Hovy, ACL 2002;

What is Supercomputing About?

What is Supercomputing About?

Size: Many problems that are interesting to scientists and engineers <u>can't fit on a PC</u> – usually because they need more than a few GB of RAM, or more than a few 100 GB of disk.

Speed: Many problems that are interesting to scientists and engineers would take a very very long time to run on a PC: months or even years. But a problem that would take
a month on a PC might take only a few hours

What Is HPC Used For?

- Simulation of physical phenomena, such as
 - Weather forecasting
 - Galaxy formation
 - Oil reservoir management
- <u>Data mining</u>: finding needles of information in a <u>haystack</u> of data, such as
 - Gene sequencing
 - Signal processing
 - Detecting storms that might produce tornados
- Visualization: turning a vast sea of data pictures that a scientist can understand

May 3 1999^[2]

System-Level Science: We Have Much to Communicate!

Problems too large &/or complex to tackle alone ...

High Resolution Climate Modeling on NERSC-3 – P. Duffy, et al., LLNL

Wintertime Precipitation

As model resolution becomes finer, results converge towards observations

Simulation: The Third Pillar of Science

- Traditional scientific and engineering method:
 - (1) Do theory or paper design(2) Perform experiments or build system
- Limitations:
 - -Too difficult—build large wind tunnels
 - -Too expensive—build a throw-away passenger jet
 - -Too slow—wait for climate or galactic evolution
 - -Too dangerous—weapons, drug design, climate experimentation

- (3) Use high performance computer systems to simulate and analyze the phenomenon
 - Based on known physical laws and efficient numerical methods
 - Analyze simulation results with computational tools and methods beyond what is used traditionally for experimental data analysis

Economic Impact of HPC

- Airlines:
 - System-wide logistics optimization systems on parallel systems.
 - Savings: approx. \$100 million per airline per year.
- Automotive design:
 - Major automotive companies use large systems (500+ CPUs) for:
 - CAD-CAM, crash testing, structural integrity and aerodynamics.
 - One company has 500+ CPU parallel system.
 - Savings: approx. \$1 billion per company per year.
- Semiconductor industry:
 - Semiconductor firms use large systems (500+ CPUs) for
 - device electronics simulation and logic validation
 - Savings: approx. \$1 billion per company per year.
- Energy
 - Computational modeling improved performance of current nuclear power plants, equivalent to building two new power plants.

An Actual Cluster

Research Computing for K-State & Kansas

SAS FRU

FRU 81Y9878

Two thousand co 150 compute not 800 TB store 7.6TB R 2 adm 50 f

2787.2 s

Current Tools

- Programming models
 - Shared memory (pthreads)
 - Message passing (MPI)
- Design Patterns
 - Master-slave
 - Producer-consumer flows
 - Shared work queues

Message Passing

Why HPC is Worth the Bother

- What HPC gives you that you won't get elsewhere is the ability to do <u>bigger, better, more exciting</u> <u>science</u>. If your code can run faster, that means that you can tackle much bigger problems in the same amount of time that you used to need for smaller problems.
- HPC is important not only for its own sake, but also because what happens in HPC today will be on your desktop in about 10 to 15 years: it puts you ahead of the curve – as a worker or a business.

The Future: All Software is Network-Centric

 We don't build or buy "computers" anymore, we borrow or lease required resources

When I walk into a room, need to solve a problem, need to communicate

 A "computer" is a dynamically, often collaboratively constructed collection of processors, data sources, sensors, networks

Similar observations apply for software

Resources

- Supercomputing in Plain English
 - Henry Neeman, OU
 - <u>http://www.oscer.ou.edu/education.php</u>
- Globus Alliance <u>http://www.globus.org</u>
- Open Science Grid <u>http://www.opensciencegrid.org</u>
- Background information <u>http://www.mcs.anl.gov/~foster</u>

Thanks to James Demmel (Berkeley) & John Gilbert (UCSB) for the generous use of their class materials. Thanks to Jimmy Lin & his on "Introduction to MapReduce" lecture. Funded in part by the National Science Foundation grants 1006860 and 0919443.

Edited by Ian Foster and Carl Kesselma

The Pleasure of

Finding Things Out

"Feynman at his idiosyncratic, brilliant best." -JOHN HORGAN, author of *The End of Science*

The Best Short Works of

RICHARD P. FEYNMAN

FOREWORD BY FREEMAN DYSON

NEW YORK TIMES BESTSELLER

The FATES of HUMAN SOCIETIES

JARED DIAMOND

RICHARD P. FEYNMAN

